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Abstract: Sometimes a homology cycle of a nonsingular compactification manifold cannot

be represented by a nonsingular submanifold. We want to know whether such nonrepre-

sentable cycles can be wrapped by D-branes. A brane wrapping a representable cycle

carries a K-theory charge if and only if its Freed-Witten anomaly vanishes. However some

K-theory charges are only carried by branes that wrap nonrepresentable cycles. We provide

two examples of Freed-Witten anomaly-free D6-branes wrapping nonrepresentable cycles

in the presence of a trivial NS 3-form flux. The first occurs in type IIA string theory com-

pactified on the Sp(2) group manifold and the second in IIA on a product of lens spaces.

We find that the first D6-brane carries a K-theory charge while the second does not.
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1. Introduction

D-branes are not classified by homology. For example in type II string theory on a spin

spacetime with a topologically trivial NSNS 3-form flux, Freed and Witten [1] have shown

that D-branes can only wrap spinc submanifolds. Maldacena, Moore and Seiberg (MMS) [2]

demonstrated that even in the SU(3) WZW model some homology classes of the spacetime

are not represented by spinc manifolds and so cannot be wrapped by D-branes. With such

inconsistent D-branes removed from the spectra, MMS demonstrated that the conserved

brane charges in this example are classified not by homology but by twisted K-theory, in

line with the conjectures of Refs. [3 – 5].

In general the Freed-Witten (FW) anomaly is a necessary but not a sufficient condition

for the homology class of a D-brane to lift to a twisted K-theory class. We will argue

that, when the NS 3-form H is topologically trivial, the FW anomaly is a necessary and

sufficient condition for all Dp-branes except for D6-branes. D6-branes are special because

they wrap 7-dimensional cycles in a 10-dimensional spacetime. René Thom, in work that

won him the 1958 Fields Medal, demonstrated that this is the lowest-dimensional case in

which a homology cycle may not be representable by a nonsingular submanifold. This

leads us to the question: Can D-branes wrap nonrepresentable cycles? To answer this

question definitively one should look at the worldsheet theory of fundamental strings,

impose boundary conditions corresponding to a singular representative of the cycle and

check for inconsistencies, such as a failure of BRST invariance. In the present note we will

use a less reliable method. We will check to see whether branes wrapping nonrepresentable

cycles carry K-theory charges. We will find that the answer is yes for some cycles and no

for others.
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Although one can show that FW anomaly-free D6-branes that fail to carry a K-theory

charge always wrap nonrepresentable cycles, the converse does not always hold. Some K-

theory charges are only carried by nonrepresentable branes. To demonstrate this, we will

recall an example of a D6-brane on a nonrepresentable cycle from Ref. [6] and show that

it does carry a K-theory charge1. Thus the type IIA version [8] of the Sen conjecture [9]

implies that D-branes may wrap certain nonrepresentable cycles.

An example2 of a FW anomaly-free D6-brane that does not carry a K-theory charge

was presented in Refs. [10, 11]. We will argue that the wrapped 7-cycle is not represented

by any nonsingular submanifold, which in particular implies that its singularity cannot be

removed by deformations or blowups. We find that the singular locus is homologous to a

two-torus.

In Sec. 2 we explain the relation between homology and K-theory charges. We re-

view an algorithm for calculating K-theory from homology, and in particular we find the

obstructions to lifting a homology class to a K-theory class. In Sec. 3 we use a result of

René Thom to argue that all of these obstructions are summarized by the Freed-Witten

anomaly together with a necessary but not sufficient condition for the representability of

the wrapped homology cycle by a nonsingular submanifold. Then in Sec. 4 we will present

two examples of the second kind of obstruction, a D6-brane wrapping a nonrepresentable

7-cycle in the group manifold Sp(2) and in a product of lens spaces. We end with some

discussion in Sec. 5.

2. The Atiyah-Hirzebruch Spectral Sequence

A D-brane that wraps a nontrivial cycle carries a charge that corresponds to the homology

class of the cycle. Diaconescu, Moore and Witten (DMW) [12] have shown that not

all of these charges are conserved, instead there are dynamical processes in which branes

wrapping nontrivial cycles can decay. In addition, in Ref. [1] the authors have found that

certain cycles cannot be wrapped by single branes. They argued that any brane wrapping

such a cycle would be anomalous, and in fact evidence was presented in [12] that their

contributions to the partition function cancel. Thus to compute the partition function it

suffices to restrict one’s attention to equivalence classes of anomaly-free branes. In other

words, D-branes are classified by a quotient of a subset of homology.

MMS have argued that this quotient of a subset is precisely twisted K-theory. They

used a mathematical algorithm known as the Atiyah-Hirzebruch spectral sequence (AHSS)

to determine which homology classes lift to K-theory classes, that is, to determine which

D-branes are unstable and which are not allowed. While in their examples the anomalous

branes suffered from the Freed-Witten (FW) anomaly, in general the AHSS construction

eliminates some branes that are FW anomaly-free. This leads to the question of whether

1The generalized D-branes of Ref. [7] may, implicitly, wrap nonrepresentable cycles.
2We have been informed that the first demonstration of the nonrepresentability of this cycle is in version

one of Ref. [6], which is also available on the arXiv at the same URL as the current version. However this

reference does not address the issue of whether a brane wrapping this cycle carries a K-theory charge, which

is the focus of the current note.
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the branes that are eliminated by the AHSS construction, but not by the FW anomaly, are

allowed in the physical theory. If such branes are allowed, they would provide counterexam-

ples to the K-theory classification program and to the IIA version of the Sen conjecture. On

the other hand, if such branes are not allowed, they would be examples of a new anomaly.

In the present note we will adopt the more modest goal of providing a characterization of

these branes.

The AHSS consists of a series of differential operators d2p−1, p ≥ 2 which map elements

of the qth integral cohomology to elements of the (q + 2p − 1)th cohomology

d2p−1 : Hq −→ Hq+2p−1, p = 2, 3, · · · . (2.1)

In general the differential d2p−1 consists of cohomology operations on the free parts of the

integral cohomology and also on cyclic subgroups of prime order less than or equal to p.

In particular, in the case of untwisted K-theory and when p is prime, d2p−1 contains a

primary cohomology operation known as the first Milnor primitive 3 Q1 whose image is a

p torsion class Zp, and also it may contain secondary operations whose images are torsion

at lower primes. A secondary cohomology operation is an operation that is not defined on

the entire cohomology, but is defined on the kernels of the preceding differentials.

We will use Poincaré duality to identify a D(9−q)-brane wrapping a (10−q)-cycle in the

integral homology group H10−q with its dual cocycle in Hq, which in terms of supergravity

fields corresponds to the Ramond-Ramond source dGq−1. The homology class of a D-brane

wrapping the cycle N10−q lifts to a twisted K-theory class if and only if its dual cohomology

class PD(N10−q) is in the kernel of all of the differentials

d2p−1(PD(N10−q)) = 0 for all p. (2.2)

For example, the first nontrivial differential contains a primary operation at prime 2

and can be explicitly written

d3x = Q1x + H ∪ x = Sq3x + H ∪ x (2.3)

where H is the NSNS 3-class and ∪ is the cup product, the integral version of the wedge

product. The Milnor primitive Q1 at prime 2 is often denoted Sq3 and is called a Steenrod

square or more precisely square 3. Sq3, like the cup product with H, increases the degree

of a cohomology class by three. DMW have explained that if d3 does not annihilate the

class of a brane then the brane suffers from an FW anomaly. The converse is not true

since some FW anomalous branes are annihilated by d3. MMS have found an example of

this phenomenon in the SU(3) Wess-Zumino-Witten WZW model, and in that case the

offending class was not in the kernel of d5 and so, as expected, did not lift to twisted

K-theory.

More concretely, consider a brane with worldvolume N in the spacetime M . Let

i : N ↪→ M be the inclusion map of the brane into the spacetime. Then the FW anomaly

is [1]

W3 + H = 0 (2.4)

3Higher Milnor primitives appear in the differentials of ‘higher’ generalized cohomology theories, for

example Q2 appears in Morava K-theory and elliptic cohomology [13].
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where W3 is the third integral Stiefel-Whitney class of the normal bundle of N in M and

H is the pullback of the NSNS 3-form to the brane worldvolume N . The pushforward of

W3 + H to the spacetime M is

i∗(W3 + H) = Sq3(PD(N)) + H ∪ PD(N) = d3(PD(N)). (2.5)

In the aforementioned SU(3) example W3 + H is nontrivial but it is in the kernel of the

pushforward. This example suggests that the role of the secondary operations is to pick up

the anomalies that were in the kernel of the pushforward. In particular one may conjecture

that the secondary operations do not imply the existence of any new anomalies, for example

all of the two-torsion operations encode the FW anomaly.

3. Nonrepresentable Cycles

While the mod 2 Milnor primitive Q1 = −Sq3 captures the FW anomaly, the mod 3 Milnor

primitive Q1 is insensitive to 2-torsion characteristic classes like the third Stiefel-Whitney

class and so it describes a different anomaly. Our next goal will be to characterize the

worldvolumes of the branes suffering from this new anomaly. We will restrict our attention

to the case in which the NS H flux is topologically trivial. By this we mean not only that

H is exact as a differential form but further that it represents the trivial class of the full

integral cohomology.

Imagine that the cycle N wrapped by our D-brane is a nonsingular manifold with a

spinc normal bundle, embedded as usual in a spin spacetime. Consider a trivial, rank

one vector bundle on our D-brane. This defines a nontrivial class in the K-theory of

N . As the normal bundle to N is spinc, we may push this class forward into the K-

theory with compact support on a tubular neighborhood of N in M . We may then push

this class forward yet again into the K-theory of M without obstruction, and we will

obtain the (possibly trivial) K-class which is the K-theory lift of the cohomology Poincaré

dual of N . Thus the cohomology Poincaré dual of N lifts to a K-class whenever N is a

nonsingular manifold with a spinc normal bundle. The spinc normal bundle condition is

physically just the condition that the brane not have a Freed-Witten anomaly. The AHSS

indicates that there must be other obstructions arising at other primes, but the existence

of the above pushforward construction of the K-class suggests that if N is nonsingular

then there is no other obstruction. Thus the Q1’s at higher primes, which appear in the

higher differentials, may only be obstructions to the existence of a nonsingular manifold

representing the homology class of N .

This has been known in the mathematics literature for more than half a century. René

Thom proved [14] that any cohomology operation at an odd prime, at any dimension not

equal to zero modulo four, annihilates all cohomology classes which are dual to homology

classes that are representable by nonsingular manifolds. The primes greater than two

are all odd and the Q1’s are all of odd degree, which are not equal to zero modulo four.

Therefore Thom’s theorem implies that Q1 at every prime greater than two annihilates all

cohomology classes dual to cycles that can be represented by nonsingular submanifolds.
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In particular, up to secondary operations, a D-brane which does not lift to a K-theory

class is not in the kernel of Q1 at some prime. If the D-brane does not have an FW anomaly,

then it is in the kernel of Q1 at prime 2, and so it must not be in the kernel of Q1 at some

odd prime. Therefore its homology class is not representable by a nonsingular manifold.

In critical superstring theories the spacetime is a 10-dimensional manifold. The lowest

dimensional Q1 that measures an obstruction to the representability of a homology class

occurs at prime 3. It is Q1 = −βP 1
3 , where β is the Bockstein homomorphism which raises

the cohomology degree by one,

β : H2j+1(X, Z3) −→ H2j+2(X, Z3), (3.1)

arising from the exact sequence of coefficients

0 −→ Z3 −→ Z9 −→ Z3 −→ 0. (3.2)

P 1
3 is the first Steenrod power operation at the prime 3

P 1
3 : Hk(X, Z3) −→ Hk+2(3−1)(X, Z3). (3.3)

In particular Q1 annihilates any cocycle of degree less than 3, and so its image is a 3-

torsion cocycle of degree equal to at least 8. A 10-manifold cannot have 3-torsion at degree

10, as the degree 10 cohomology is determined entirely by the manifold’s orientability,

which is in Z2, and so Q1 annihilates 5-classes. It turns out that Q1 also annihilates 4-

classes. Therefore Q1 may only be nontrivial on a 3-class z. Physically z may describe the

Ramond-Ramond 3-form flux G3 in type IIB or a D6-brane in type IIA which is Poincaré

dual to z. In the first case βP 1
3 z is the D-string charge carried by the flux. In the second

the dual of βP 1
3 z is the singular locus of the D6. In M-theory, a role for p = 3 has appeared

in [15].

4. Two Examples

4.1 IIA on a Product of Lens Spaces

We now recall an example of a nontrivial Q1 action that has appeared in Refs. [6, 10, 11].

Consider the product of lens spaces X10 = S3/Z3 × S7/Z3, where the Z3’s are subgroups

of the free circle actions on the spheres. T-duality and fluxes on similar spaces has been

considered in [16]. We will be interested in the cohomology groups of S3/Z3 and S7/Z3

with Z3 coefficients. These are generated by the 1 and 2-cocycles x1 and x2 for S3/Z3, and

y1 and y2 for S7/Z3.

The cocycles x1 and y1 do not have integer lifts, as β(x1) = −x2 and β(y1) = −y2.

However the degree three class

w = x1y2 − x2y1 (4.1)

does admit an integer lift as

β(w) = −x2y2 + x2y2 = 0. (4.2)
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We are interested in the action of Q1 = −βP 1
3 on w, which gives the non-zero result

d5(w) = Q1(w) = −βP 1
3 (w) = −βP 1

3 (x1y2) = −β(x1y
3
2) = x2y

3
2. (4.3)

Thus the 7-cycle Poincaré dual to w is not representable by any nonsingular subman-

ifold, and, as it is not annihilated by the AHSS differential d5, it also does not lift to a

K-theory class. The obstruction is d5(w) which is dual, inside of the 7-cycle, to a 2-torus.

This suggests that, at least for a certain choice of representatives of the 7-cycle, the singular

locus is a 2-torus. For example a 5-dimensional normal slice to the 2-torus inside of the

singular 7-cycle may be the real cone over CP
2.

4.2 IIA on the Sp(2) Group Manifold

We have used the AHSS and the critical dimension of type II superstring theories to argue

that an FW anomaly-free brane lifts to twisted K-theory if and only if the Poincaré dual w

of the cycle that it wraps is in the kernel of Q1 = −βP 1
3 . Thom’s result on representability

is somewhat weaker, while all representable cycles are in the kernel of Q1, there are other

obstructions to representability that do not appear in the AHSS. For example, in Ref. [6]

the authors have shown that representability of the dual cycle to w implies

w ∪ P 1
3 w = 0. (4.4)

In particular they provided an example in which βP 1
3 w = 0 and w ∪ P 1

3 w 6= 0. They

considered the 10-dimensional group manifold Sp(2). This is topologically a 3-sphere bun-

dle over a 7-sphere and in particular it has the cohomology ring of the trivial bundle

H0(Sp(2)) = H3(Sp(2)) = H7(Sp(2)) = H10(Sp(2)) = Z. (4.5)

Notice that the cohomology contains no torsion subgroups and so all of the Atiyah-

Hirzebruch differentials are trivial and every integral cohomology class lifts to a K-theory

class. However the authors prove that the generator w of H3 = Z does not satisfy the

condition (4.4) and so the dual homology class is not representable. Thus in this case there

is a K-class which does not correspond to any homology class which is represented by any

nonsingular submanifold. As every K-class is realizable as a gauge field configuration on

some stack of branes, the IIA version of the Sen conjecture implies that such a singular

brane configuration must be allowed in IIA string theory.

One may then hope to use the Sp(2) WZW model to provide a nontrivial test of the

Sen conjecture. However notice that in the example at hand we have considered a trivial

H-flux, corresponding to a negative level and therefore a nonunitary conformal field theory.

It may therefore be difficult to decide whether this brane configuration should be allowed.

5. Discussion

We have argued that an FW anomaly-free brane carries a K-theory charge if it wraps a rep-

resentable cycle. We then presented two examples that showed that the nonrepresentability

of a FW anomaly-free cycle does not mean that a wrapped brane necessarily does or does

not carry a K-theory charge.
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In particular we considered one compactification on a product of lens spaces in which

a FW anomaly-free brane wrapped on a nonrepresentable cycle does not carry a K-theory

charge. One may object that this is not a legitimate compactification of IIA string theory

as it has positive curvature and so is not Ricci flat. This problem is easily solved. The

product of lens spaces is a T 2-bundle over CP
1×CP

3 and can be made into a Ricci-flat space

by replacing CP
1 by a Riemann surface of genus greater than zero. As this replacement

does not affect the calculation of Q1 [10], there will still be a nonrealizable cycle which

does not lift to a K-theory class.

One may argue that branes on nonrepresentable cycles are of limited interest, because

in string phenomenology one is typically interested in a four-dimensional topologically

trivial space times a six, seven or eight-manifold, and all cycles of six, seven and eight-

manifolds are representable. There are two interesting cases in which representability is an

issue. First, one may consider noncritical string theories. For example nonrepresentable

cycles are generic on group manifolds and so in WZW models. Second, one may consider

a spacetime which locally is a product of R
4 or dS4 times a low-dimensional manifold,

but in which globally the topology of the four big dimensions is mixed with that of the

little dimensions. For example, at the big bang, at a big crunch and at some horizons the

product approximation may fail. Such a compactification would break four-dimensional

Lorentz symmetry a little far away from interesting places like the big bang, and break it

a lot at the big bang. Of course, this is the breaking pattern observed in nature, and for

example in the FLRW solution.

It would be interesting to understand the effect of a brane wrapping a nonrepresentable

cycle on a low energy effective theory in the remaining dimensions, when there are any.

For example, the Z3 anomaly that assures that certain nonrepresentable cycles do not yield

K-theory charges may correspond to some interesting anomaly in the low energy effective

theory. The low energy physics of D6-branes wrapped on representable cycles that carry

torsion K-theory charges has recently been investigated in Ref. [19].

The more interesting question is whether branes can be wrapped on these nonrealizable

cycles. For this we need some description of the worldsheet physics. We hope that the

worldsheet theory on the product of lens spaces is the IR fixed point of a linear sigma

model which is just the tensor product of the linear sigma models on the two lens spaces.

This model is somewhat complicated by the strange boundary condition corresponding to

the brane which wraps the nonrepresentable cycle.

In the case of the group manifold, the corresponding WZW model is nonunitary. It

can be made unitary is we add an H-flux, but in this would go beyond the scope of

our results. In particular we do not know how H-flux changes the AHSS differential d5,

although the rational part of the result has been recently provided in Ref. [18]. We hope

to use T-duality to find the full expression for d5 in the twisted case. This would allow

one to use a unitary WZW model to determine whether or not a D-brane wrapped on a

nonrepresentable cycle can provide a physical boundary condition for fundamental strings.

However, once H corrections are included, it may well be that representability will be

replaced with a twisted notion of representability, such as the representability of a section

of PU(H) or loop group of E8 bundle over a cycle.
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